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Fig. 3. Dellection ratio as function of b2/bl for .several values 
of 13. 
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Mter substitution for u and b and integration this becomes 

~ MH. = h.8 + ! (~ - 1) he' + 
blH' UH. 4 bl 

13 [h t
3 + (~ - 1) heht

3 + ~ (~ - 1) ht'] (2) 

Similarly for this section shown in Fig. l(b), 

bl~3 ~~:e = 13 [h'tS + i (~ - 1) h't'] + h'es + 

(~ - 1) h'e
3h't + ~ (~ - 1 )h'.' (3) 

With the preceding equations, the bending stresses may be 
determined for a given cross section and bending moment if 
the parameter {J is known. As {J has to be determined, how
ever, the equations must be used in somewhat different form. 

In pure bending, the radius of curvature R of the neutral 
axis at a given time is related to the surface strain 
by l/R = EHe/H. = {JuHeF/H. and similarly l/R' = 
fJull'.F/ H'e. Hence the ratio of the two curvatures at a given 
time 1/ R + 1/ R' is merely the right-hand side of Eq. (3) 
divided by the right-hand side of Eq. (2). The curvature is 
given by l / R = d 2y/ dx2/ [1 + (dy/ dx)2]'/', where y is bending 
deflection and x is distance along the beam. In most practical 
cases the slope dy/ dx is small enough for this to be written as 
1/ R = d2y / dx2 and bending deflections will then be directly 
proportional to 1/ R. Thus, if the beams with cross sections 
shown in Fig. 1 are subjected to the same bending moments 
the ratio of deflections 0/ 0' at corresponding locations along 
the beam at a given time are given by 

= b ... ;. 
~ 
J: 
is ...... 
:E e 

Fig. 4. 
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Quantity used to obtain creep constants as a function 
of b2/bl for several values of 13. 

0/0' = 1/R = Right-hand side Eq. (3) 
1/R' Right-hand side Eq. (2) 

This relation is shown in Fig. 3 for a range of values of {J and 
bdb1• By observing the ratio at several times, for which creep 
strains are large relative to elastic strains, the ratio {J may be 
found. If fJ varies greatly with time the preceding analysis is 
not applicable, whereas if {J = 1, tension and compression 
creep are equivalent and the analysis of bending tests presents 
no difficulty. If fJ ~ 1, the next step is to determine the in
dividual tension or compression creep data. This may be 
done by using Eq, (2) to find ITH. for a given bending moment. 
Measurements of curvature as a function of time (obtained 
from bending deflection data) then make it possible to deter
mine F from F = (1/ R) (He/ IT He) (1/ (3). For this purpose Fig. 
4 shows (3M/ b1H3) (He/ ITHe) for various values of fJ and b2/ b!. 
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